Motor Active Chemwatch: 5301-15 Version No: 3.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: **01/11/2019** Print Date: **04/08/2022** L.GHS.AUS.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-------------------------------|-------------------------------| | Product name | Ultimate All Wheel Cleaner | | Chemical Name | Not Applicable | | Synonyms | Part no: G180124 (24oz/709ml) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against # Details of the supplier of the safety data sheet | Registered company name | Motor Active | |-------------------------|---| | Address | 35 Slough Business Park, Holker Street Silverwater NSW 2128 Australia | | Telephone | +61 2 9737 9422 1800 350 622 | | Fax | +61 2 9737 9414 | | Website | www.motoractive.com.au | | Email | andrews@motoractive.com.au | # Emergency telephone number | Association / Organisation | MotorActive | |-----------------------------------|---| | Emergency telephone numbers | +61 2 9737 9422 (For General Information Monday to Friday 8:30am to 5:pm) | | Other emergency telephone numbers | 13 11 26 (In Case of Emergency contact: Poison Information Hotline) | # **SECTION 2 Hazards identification** # Classification of the substance or mixture # HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # ChemWatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 2 | - 1 | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |-------------------------------|---| | Classification ^[1] | Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 1, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 2, Acute Toxicity (Oral) Category 4 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ### Label elements Hazard pictogram(s) Signal word Danger Hazard statement(s) H315 Causes skin irritation. Chemwatch: 5301-15 Version No: 3.1 Page 2 of 15 **Ultimate All Wheel Cleaner** Issue Date: 01/11/2019 Print Date: 04/08/2022 | H318 | Causes serious eye damage. | |------|--------------------------------------| | H317 | May cause an allergic skin reaction. | | H401 | Toxic to aquatic life. | | H302 | Harmful if swallowed. | # Supplementary statement(s) Not Applicable # CLP classification (additional) Not Applicable # Precautionary statement(s) Prevention | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | |------|--| | P261 | Avoid breathing mist/vapours/spray. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P270 | Do not eat, drink or smoke when using this product. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | # Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | P330 | Rinse mouth. | # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal | Dispose of contents/container to authorised hazardous of special waste collection point in accordance with any local regulation. | P501 | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |--|------|--| |--|------|--| Not Applicable # **SECTION 3 Composition / information on ingredients** # Substances See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | |------------|---|-----------------------------| | 367-51-1 | <10 | sodium thioglycolate | | 68585-34-2 | <5 | sodium lauryl ether sulfate | | 68439-46-3 | <5 | alcohols C9-11 ethoxylated | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | # **SECTION 4 First aid measures** | Description of first aid measur | es | |---------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. | Issue Date: 01/11/2019 Chemwatch: 5301-15 Page 3 of 15 Version No: 3.1 ### **Ultimate All Wheel Cleaner** Print Date: 04/08/2022 - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. ### Indication of any immediate medical attention and special treatment needed As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination). For poisons (where specific treatment regime is absent): ### BASIC TREATMENT Establish a patent airway with suction where necessary - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 L/min. - Monitor and treat, where necessary, for pulmonary oedema. - Monitor and treat, where necessary, for shock. - Anticipate seizures. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool ### ADVANCED TREATMENT - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure
ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias, - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 ### **SECTION 5 Firefighting measures** # **Extinguishing media** - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide - ► Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - Fire Fighting Avoid spraving water onto liquid pools. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Combustible. - Slight fire hazard when exposed to heat or flame. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke - Mists containing combustible materials may be explosive Combustion products include carbon dioxide (CO2) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes. Not Applicable # **SECTION 6 Accidental release measures** **HAZCHEM** Fire/Explosion Hazard ### Personal precautions, protective equipment and emergency procedures See section 8 Issue Date: 01/11/2019 Print Date: 04/08/2022 Continued... ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up Minor Spills WARNING: Never use dry, powdered hypochlorite or other strong oxidizer for mercaptan spills, as autoignition can occur. - ▶ Remove all ignition sources - Clean up all spills immediately. - - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb spill with sand, earth, inert material or vermiculite. - Wipe up. - Place in a suitable, labelled container for waste disposal. #### Moderate hazard. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or ignition sources. - **Major Spills** - Increase ventilation. Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** Safe handling ### Precautions for safe handling ### ▶ DO NOT allow clothing wet with material to stay in contact with skin The careful design and assembly of equipment is paramount to the control of mercaptan odors. Although careful planning reduces the chances for leaks developing in the system, it is important to be prepared to locate and stop small leaks promptly. It is recommended that a leak check be made prior to every run carried out under pressure in metal equipment with a mercaptan or hydrogen sulfide present. An effective method to obtain a leak-free system involves two steps: - 1. Charge the system with nitrogen gas or other inert, nontoxic gas to a pressure at least as high as will be used in practice, and check for a drop in pressure with time on a suitable gauge. In some cases, it is advantageous to block off sections of the system to facilitate finding the leak. If any leaks are detected by using a foaming detergent solution, correct them and recheck. - 2. Recharge the system with hydrogen sulfide gas. Since hydrogen sulfide is very toxic, it is good practice to charge the system in steps of increasing pressure, until it is certain that no large leaks are present. Any remaining small leaks can be located quickly by examining the system with lead acetate paper. Dilution of the hydrogen sulfide with nitrogen can also be considered. To control odors in mercaptan reactions in the laboratory. All reactions must be carried out in a hood or, in the case of pressure reactions, in a closed in area equipped with an efficient exhaust fan. In the laboratory, the two basic types of reactions used are batch and continuous. Batch-type reactions at atmospheric pressure are generally conducted in glass equipment. If no significant quantity of a volatile mercaptan is present, the reaction can be carried out in a hood equipped with a charcoal bed in the exhaust line to absorb the mercaptan. In reactions where appreciable quantities of a volatile mercaptan are present, a vent gas line can be connected to two caustic scrubbers in series, with an empty trap inserted between the reaction and scrubbers to avoid reverse flow of caustic into the reaction. Continuous-type reactions often include a continuous flow of volatile C1 to C4 mercaptans. In this case, the vented gases can be fed to an outside gas burner and stack for destruction of A hood, equipped with a charcoal filter in the exhaust line, and a high linear air velocity (100 ft./min., minimum) is necessary for mercaptan reactions carried out in glass and certain small-scale reactions with stainless-steel. In reactions where relatively small amounts of mercaptans can escape, the charcoal bed can absorb the mercaptans and prevent the escape of odor to the outside atmosphere. However, in reactions with hydrogen sulfide or lower molecular weight mercaptans, e.g., C1-C4 mercaptans, the quantity of effluent gases is directed to an outside gas burner to convert the odorous compounds to acceptable combustion products, including CO2 and SO2. A very familiar and successful method for containing the odors of mercaptan (primarily C1 and C6) in laboratory reactions and distillations is to connect the condenser vent to two caustic scrubbers in series with an empty trap between the system and the scrubbers to catch the caustic in the event of reverse flow. Gas bubblers fitted with sintered-glass dip tubes and charged with aqueous sodium hydroxide (5 to 20%) are commonly used. Frequently, a low flow of inert gas, e.g., nitrogen, is used to maintain a steady flow through the bubbler. Sodium hypochlorite solution (3-10%) destroys the odor by converting the mercaptan predominantly to the corresponding sulfonic acid (sodium salt). A wash bottle with hypochlorite solution is very convenient for quickly eliminating or controlling the odor from small spills or when cleaning up glass equipment. A bath of this solution is also very useful. WARNING! Do not add this solution to a large quantity of concentrated mercaptan, since a violent reaction may occur. A 30-40% aqueous solution of lead acetate trihydrate serves acts as a detector for methyl and ethyl mercaptan as well as hydrogen sulfide. A wash bottle of lead acetate solution is used to moisten a piece of filter paper or paper towel which is then held close to (no contact) the suspected leak. With hydrogen sulfide the paper turns black and with the two mercaptans a yellow color is obtained (high sensitivity). A large plastic bag should be kept in the hood, to store any odorous waste materials. The plastic bags can then be sealed in fiber drums for disposal. Glass bottles containing mercaptans and other odorous compounds can also be packed in fiber drums for odor-containment and properly marked for disposal. A box of disposable gloves should be available, and the gloves should be discarded (in plastic bag in hood) after each use. Disposable aprons or lab coats are recommended, since clothing contacted with mercaptan is often difficult to deodorise Types of tubing found useful with mercaptans include: Teflon7, TFE, FEP, and PFA, Bev-a-line (IV or V), and 316 stainless steel. Bev-a-line tubing has a polyethylene liner cross-linked to an ethylene vinyl acetate shell, a useful temperature range of -60 C to +250 C, and is heat bondable. It is less expensive than TFE tubing and is convenient for flexible connections between glass and metal tubing lines. It is available from most laboratory supply houses. Copper and brass are unacceptable materials for handling mercaptans, because mercaptans are H2S are highly corrosive to copper and brass. Care should be taken not to use valves and gauges with brass components. Atofina Chemicals Chemwatch: 5301-15 Version No: 3.1 ### **Ultimate All Wheel Cleaner** Issue Date: **01/11/2019**Print Date: **04/08/2022** | | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid sonking, naked lights or ignition sources. Avoid contact with incompatible materials.
When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. | |-------------------|--| | Other information | Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | ### Conditions for safe storage, including any incompatibilities | Suitable container | Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|--| | Storage incompatibility | Avoid reaction with oxidising agents | ### SECTION 8 Exposure controls / personal protection TEEL-1 ## **Control parameters** Occupational Exposure Limits (OEL) # INGREDIENT DATA Not Available Ingredient # **Emergency Limits** | Ultimate All Wheel Cleaner | Not Available | Not Available | | Not Available | |-----------------------------|---------------|---------------|---------------|---------------| | Ingredient | Original IDLH | | Revised IDLH | | | sodium thioglycolate | | | Not Available | | | sodium lauryl ether sulfate | Not Available | | Not Available | | | alcohols C9-11 ethoxylated | Not Available | | Not Available | | TEEL-2 # Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |-----------------------------|--|----------------------------------|--| | sodium thioglycolate | E | ≤ 0.01 mg/m³ | | | sodium lauryl ether sulfate | E | ≤ 0.01 mg/m³ | | | alcohols C9-11 ethoxylated | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | # MATERIAL DATA # **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: TEEL-3 Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. # Appropriate engineering controls General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|--------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | Issue Date: 01/11/2019 Chemwatch: 5301-15 Page 6 of 15 Version No: 3.1 Print Date: 04/08/2022 ### **Ultimate All Wheel Cleaner** direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active 1-2.5 m/s (200-500 f/min.) generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of 2.5-10 m/s very high rapid air motion). (500-2000 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection ### Eve and face protection Safety glasses with side shields. Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] ### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber # NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when
making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact - · chemical resistance of glove material, · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. \cdot Contaminated gloves should be replaced. - As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ### **Body protection** Hands/feet protection See Other protection below # Other protection - Overalls. P.V.C apron. - Barrier cream. - Skin cleansing cream. - ► Eye wash unit. Issue Date: 01/11/2019 Print Date: 04/08/2022 ### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor Maximum gas/vapour concentration present in air p.p.m. (by volume) | | Half-face Respirator | Full-Face Respirator | | |---|-------|----------------------|----------------------|--| | up to 10 | 1000 | A-AUS / Class1 P2 | - | | | up to 50 | 1000 | - | A-AUS / Class 1 P2 | | | up to 50 | 5000 | Airline * | - | | | up to 100 | 5000 | - | A-2 P2 | | | up to 100 | 10000 | - | A-3 P2 | | | 100+ | | | Airline** | | ^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties | Appearance | Transparent or slightly cloudy liquid with vanilla or sulfurous odour. | | | | |--|--|---|----------------|--| | Physical state | Liquid Relative density (Water = 1) 1.02 | | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | pH (as supplied) | 6-7 | Decomposition temperature (°C) | Not Available | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 306-510 | | | Initial boiling point and boiling range (°C) | 100 | Molecular weight (g/mol) | Not Applicable | | | Flash point (°C) | >93.33 (PMCC) | Taste | Not Available | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | Flammability | Not Applicable | Oxidising properties | Not Available | | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | Solubility in water | Not Available | pH as a solution (Not
Available%) | Not Available | | | Vapour density (Air = 1) | Not Available | VOC g/L | 365 | | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** ### Information on toxicological effects Inhaled The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Chemwatch: 5301-15 Page 8 of 15 Issue Date: 01/11/2019 Version No: 3.1 Print Date: 04/08/2022 ### **Ultimate All Wheel Cleaner** | Ingestion | Accidental ingestion of the material may be harmful; animal experim
produce serious damage to the health of the individual. | nents indicate that ingestion of less than 150 gram may be fatal or may | | | |-----------------------------
--|--|--|--| | Skin Contact | Skin contact with the material may be harmful; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | | | Еуе | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | | | Chronic | Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers (Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic exposure to thioglycolate salts (in occupational settings) have produce dermatoses and allergic reactions characterised by oedema, burnin | | | | | Ultimate All Wheel Cleaner | TOXICITY Not Available | IRRITATION Not Available | | | | sodium thioglycolate | TOXICITY dermal (rat) LD50: >798<=1596 mg/kg ^[1] Inhalation(Rat) LC50; >2729 mg/l4h ^[1] Oral (Rat) LD50; 25-200 mg/kg ^[1] | IRRITATION Not Available | | | | sodium lauryl ether sulfate | TOXICITY Oral (Rat) LD50; 1600 mg/kg ^[2] | IRRITATION Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):25 mg/24 hr moderate Skin: adverse effect observed (irritating) ^[1] | | | | alcohols C9-11 ethoxylated | TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[2] Inhalation(Rat) LC50; >1.6 mg/l4h ^[1] Oral (Rat) LD50; 1378 mg/kg ^[2] | IRRITATION Eye (human): SEVERE Eye: adverse effect observed (irritating) ^[1] Skin: no adverse effect observed (not irritating) ^[1] | | | | | | Skin: SEVERE | | | Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact SODIUM THIOGLYCOLATE eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Ammonium and glyceryl thioglycolate and thioglycolic acid are used predominantly in cosmetic permanent waving lotions at concentrations up to Chemwatch: 5301-15 Page 9 of 15 Version No: 3.1 ### Ultimate All Wheel Cleaner Issue Date: 01/11/2019 Print Date: 04/08/2022 15.4% (as thioglycolic ccid). At use concentrations, these cosmetic ingredients are only slightly toxic in acute single oral and dermal exposures. In repeated dermal tests for extended periods of exposure, these ingredients were toxic. Commercial permanent wave products produced transient conjunctival redness to both rinsed and unrinsed eves. The results of skin testing for irritation and sensitisation of these thioglycolates depends on the type of test system used. Under occlusive patch testing, the data indicate that these ingredients are cumulative irritants and possibly weak sensitisers, but not under semi-occlusive test conditions. In clinical patients, mainly hairdressers, glyceryl thioglycolate elicited allergic reactions at concentrations down to 0.25%. Administration of ammonium thioglycolate to animals has produced hypoglycaemia, and thyroid effects. The acute inhalation toxicity of a liquid droplet aerosol containing aqueous ammonium thioglycolate (as 60% thioglycolic acid) was evaluated using rats (number and strain not stated). Animals were exposed to the aerosol for 1 hr and then observed for 14 days. None of the animals died. Few animals experienced respiratory distress, and signs were not observed beyond 24 hr post-exposure. At necropsy, minor pulmonary abnormalities were observed Hair-waving solutions containing thioglycolates may produce keratitis; they may also produce irritation, burning sensations, conjunctival inflammation, corneal epithelial erosion, turbidity of the cornea, mydriasis, cytoplegia, loss of convergence
and disturbances of vision. A mother and daughter developed bilateral optic neuritis after the use of a cold wave lotion containing ammonia thioglycolate. Oedema of the discs and retina and centrocecal scotomas horizontal oval defect in the field of vision) were seen. Oedema subsided in six months but the scotomas persisted. Sodium thioglycolate, which has widespread occupational and consumer exposure to women from cosmetics and hair-care products, was evaluated for developmental toxicity by topical exposure during the embryonic and fetal periods of pregnancy. In rats, maternal topical exposure to sodium thioglycolate, at 200 mg/kg/day (the highest dose tested) on gestational days (GD) 6-19, resulted in maternal toxicity, including reduced body weights and weight gain, increased relative water consumption and one death. Treatment-related increases in feed consumption and changes at the application site occurred at all doses, in the absence of increased body weights or body weight change. Foetal body weights/litter were decreased at 200 mg/kg/day, with no other embryo/foetal toxicity and no treatment-related teratogenicity in any group. In rabbits, maternal topical exposure to sodium thioglycolate on GD 6-29 resulted in maternal dose-related toxicity at the dosing site in all groups; no maternal systemic toxicity, embryo/fetal toxicity, or treatment-related teratogenicity were observed in any group. A no observed adverse effect level (NOAEL) was not identified for maternal toxicity in either species with the dosages tested. The developmental toxicity NOAEL was 100 mg/kg/day (rats) and >65 mg/kg/day (rabbits; the highest dose tested). The clinical relevance of this study results is uncertain because no data were available for levels, frequency, or duration of exposures in female workers or end users. Repeated exposure thioglycolic acid for 28 days was investigated in the rat at dose levels of 30, 300 and 1000 mg/kg bw/day. The effects in the liver and thyroid were observed at 1000 and 300 mg/kg bw/day. Centrilobular hepatocyte enlargement of the liver was evident in animals of either sex treated with 1000 and 300 mg/kg/day. Thyroid changes identified as follicular cell hypertrophy were evident in animals of either sex treated with 1000 mg/kg bw/day or males only treated with 300 mg/kg bw/day. These effects were considered as adaptive changes to the treatment. The NOAEL was established as 1000 mg/kg bw/day, based on no adverse effects at this dose level. * [CESIO] No significant acute toxicological data identified in literature search. Alkyl ether sulfates (alcohol or alkyl ethoxysulfates) (AES) (syn: AAASD ,alkyl alcohol alkoxylate sulfates, SLES) are generally classified according to Comité Européen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R36 (Irritating to eyes). An exception has been made for AES (2-3E0) in a concentration of 70-75% where R36 is substituted with R41 (Risk of serious damage to eyes). AES are not included in Annex 1 of the list of dangerous substances of Council Directive 67/548/EEC. In assessing this family the Cosmetic Ingredient Review (CIR) Expert Panel recognized that most of the acute oral toxicity, dermal irritation and sensitization, subchronic and chronic oral toxicity, reproductive and developmental toxicity, carcinogenicity, and photosensitization studies have been conducted on ammonium laureth sulfate and sodium laureth sulfate. Sodium and ammonium laureth sulfate have not evoked adverse responses in any toxicological testing, including acute oral toxicity, sub-chronic and chronic oral toxicity, reproductive and develop-mental toxicity, carcinogenicity, and photosensitization studies. These data, however, are considered a sufficient basis for concluding that the other ingredients are safe in the practices of use and concentration described in the safety assessment because of the fundamental chemical similarities between them and because they all are chemically similar salts(salts are expected to be dissociated in any product formulation independent of whether the salt is sodium, ammonium, magnesium, or zinc) of sulfated ethoxylated alcohols, and they all function as surfactants in cosmetic formulations. Based on these considerations, safety test data on one ingredient may be extrapolated to all of them. The panel noted that sodium laureth sulfate and ammonium laureth sulfate can produce eye and/or skin irritation in experimental animals and in some human test subjects; irritation may occur in some users of cosmetic formulations containing these ingredients. The irritant effects, however, are similar to those produced by other detergents, and the severity of the irritation appears to increase directly with concentration Acute toxicity: AES are of low acute toxicity. Neat AES are irritant to skin and eyes. The irritation potential of AES containing solutions depends on concentration. Local dermal effects due to direct or indirect skin contact with AES containing solutions in hand-washed laundry or hand dishwashing are not of concern because AES is not a contact sensitiser and AES is not expected to be irritating to the skin at in-use concentrations. The available repeated dose toxicity data demonstrate the low toxicity of AES. Also, they are not considered to be mutagenic, genotoxic or carcinogenic, and are not reproductive or developmental toxicants. The consumer aggregate exposure from direct and indirect skin contact as well as from the oral route via dishware residues results in an estimated total body burden of 29 ug /kg bw/day. AES are easily absorbed in the intestine in rats and humans after oral administration. Radiolabelled C11 AE3S and C12 AE3S were extensively metabolized in rats and most of the 14C-activity was eliminated via the urine and expired air independently of the route of administration (oral, intraperitoneal or intravenous). The main urinary metabolite from C11 AE3S is propionic acid-3-(3EO)-sulfate. For C12 and C16 AE3S, the main metabolite is acetic acid-2-(3EO)-sulfate. The alkyl chain appears to be oxidised to CO2 which is expired. The EO-chain seems to be resistant to metabolism. AES are better tolerated on the skin than, e.g., alkyl sulfates and it is generally agreed that the irritancy of AES is lower than that of other anionic surfactants. Alkyl chain lengths of 12 carbon atoms are considered to be more irritating to the skin compared to other chain lengths. The skin irritating properties of AES normally decrease with increasing level of ethoxylation. Undiluted AES should in general be considered strongly irritating. Even at concentrations of 10% moderate to strong effects can be expected. However, only mild to slight irritation was observed when a non-specified AES was applied at 1% to the skin. Subchronic toxicity: A 90-day subchronic feeding study in rats with 1% of AE3S or AE6S with alkyl chain lengths of C12-14 showed only an increased liver/body weight ratio. In a chronic oral study with a duration of 2 years, doses of C12-AE3S of 0.005 - 0.05% in the diet or drinking water had no effects on rats. The concentration of 0.5% sometimes resulted in increased kidney or liver weight. Subchronic 21-day repeat dose dietary studies showed low toxicity of compounds with carbon lengths of C12-15, C12-14 and C13-15 with sodium or ammonium alkyl ethoxylates with POE (polyoxyethylene) n=3. One study indicated that C16-18 POE n=18 had comparable low toxicity. No-observed-adverse-effect levels (NOAELs) range from 120 to 468 mg/kg/day, similar to a NOAEL from a 90-day rat gavage study with NaC12-14 POE n=2(CAS RN 68891-38-3), which was reported to be 225 mg/kg/day. In addition, another 90-day repeat dose dietary study with NaC12-15 POE n=3 (CAS RN 68424-50-0) resulted in low toxicity, with a NOAEL of greater than approximately 50 mg/kg/day (calculated based on dose of 1000 ppm in diet). Effects were usually related to hepatic hypertrophy, increased liver weight, and related increases in haematological endpoints related to liver enzyme induction. Reproductive and developmental toxicity: No evidence of reproductive and teratogenic effects was seen in a two-generation study in rats fed with a mixture (55:45) of AES and linear alkylbenzene sulfonates. Dietary levels of 0.1, 0.5, and 1% were administered to the rats either continuously or during the period of major organogenesis during six pregnancies. No changes in reproductive or embryogenic parameters were observed. Based on this study an overall no-observed-adverse-effect level (NOAEL) for systemic effects was 0.1%, which was 86.6 mg/kg/day for the F0 generation, and 149.5 mg/kg/day for the F1 generation. The NOAEL of 86.6 mg/kg/day was selected as the toxicology endpoint for the chronic risk assessment for the sulfate derivatives. Carcinogenicity: Chronic dietary studies conducted with rats showed no incidence of cancer and no effects at the concentrations tested (lowest dose tested was ca 75 mg/kg/day). NOTE: Some products containing AES/ SLES have been found to also contain traces (up to 279 ppm) of 1,4-dioxane; this is formed as a by-product during the ethoxylation step of its synthesis. The U.S. Food and Drug Administration recommends that these levels be monitored. The U.S. Environmental Protection Agency classifies 1,4-dioxane to be a probable human carcinogen (not observed in epidemiological studies of SODIUM LAURYL ETHER SULFATE Chemwatch: 5301-15 Page 10 of 15 Issue Date: 01/11/2019 Version No: 3.1 Print Date: 04/08/2022 ### **Ultimate All Wheel Cleaner** workers using the compound, but resulting in more cancer cases in controlled animal studies), and a known irritant with a no-observed-adverseeffects level of 400 milligrams per cubic meter at concentrations significantly higher than those found in commercial products. Under Proposition 65. 1.4-dioxane is classified in the U.S. state of California to cause cancer.
The FDA encourages manufacturers to remove 1.4-dioxane, though it is not required by federal law. Sensitising potential: Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing #### Toxicokinetics: Following oral exposure. AES is readily absorbed in the gastrointestinal tract in human and rat and excreted principally via the urine or faeces depending on the length of the ethoxylate chain but independently of the route of administration. Once absorbed, AES is extensively metabolized by beta- or omega oxidation. The alkyl chain appears to be oxidized to CO2 which is expired. The EO-chain seems to be resistant to metabolism. Regarding the different anions, it is expected that the salts will be converted to the acid form in the stomach. This means that for all types of parent chemical the same compound structure eventually enters the small intestine. Hence, the situation will be similar for compounds originating from different salts and therefore no differences in uptake are anticipated. The length of the ethoxylate portion in an AES molecule seems to have an important impact on the biokinetics of AES in humans and in the rat. Alcohol ethoxysulfates with longer ethoxylate chains (>7-9 EO units) are excreted at a higher proportion in the faeces. This is however not of interest for the AES within this category as their ethoxylation grade is 1 to 2.5. Dermal absorption There are two reliable and relevant studies available assessing the dermal absorption rate of AES. The study with AES (C12 -14; 2 EO) Na (CAS 68891-38-3) was performed according to OECD guideline 428 with human skin of the abdomen region (3 donors, n=2). The test substance was applied at a concentration of 10% for 24 h The mean amount removed from the skin surface (skin wash) ranged from 87.16% to 94.56% of the dose applied. The amounts in the receptor could not be quantified, since it was below the analytical limit of quantification (LOQ). The mean recovery in the two first tape strips was 1.48% during all performed experiments. In the further 18 tape strips a mean recovery of 2.86% was documented. The recovery values for the cryocuts have accounted 0.56% in mean. The mean absorbed dose, sum of the amounts found in the viable epidermis, dermis and receptor medium was 0.56%. The mean recovery values have varied from 90.90% to 100.21%, which complies with the acceptance criteria of 100 ± 15%. There is also an in vivo study according to OECD guideline 427 for AES (C12 -14; 2 EO) Na (CAS 68891-38-3) available (Aulmann, 1996). Wistar rats were exposed to 1% aqueous solutions of the test item for 15 min and 48 h under semi-occlusive conditions. The mean amount of AES (C12-14; 2 EO) Na (CAS 68891-38-3) removed from the skin surface after the 15 min exposure period (via washing) ranged from 92.8% to 97.2% of the dose and from 91.6% to 98.4% after 48 h when the skin was not washed until sacrifice. The amounts in faeces and skin could not always be quantified, since it was below the analytical limit of quantification (LOQ). The mean absorbed dose, sum of the amounts found in urine, faeces and skin in the experiment with washing was about 0.1% and 0.9% without The mean recovery values varied from 98.6% to 103%. Taking the results of both studies together the dermal absorption is very low. The in vitro study with human skin indicated the dermal absorption to be 0.56% within 24 h and the in vivo study indicated the dermal absorption to be 0.9% within 48 h. The mean recovery rates on the skin are greater than 87%. These data demonstrate that the test substance remains on the skin surface. Thus, the value of 0.9% dermal absorption is References: Danish EPA - Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products (2001). Environmental Project No. 615, pp. 24-28 HERA (2003). Human & Environmental Risk Assessment on ingredients of European household cleaning products Alcohol Ethoxysulphates, Human Health Risk Assessment Draft, 2003. http://www. heraproject. com. Final Report of the Amended Safety Assessment of Sodium Laureth Sulfate and Related Salts of Sulfated Ethoxylated Alcohols: (nternational Journal of Toxicology 29 (Supplement 3) 151S-161S: 2010 http://journals.sagepub.com/doi/pdf/10.1177/1091581810373151 The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Somnolence, ataxia, diarrhoea recorded, Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products . Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity . Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the chemicals with an average alkyl chain length C >=6 may also contain shorter alkyl chains C <6. It is not practical to quantify the proportion of ALCOHOLS C9-11 **ETHOXYLATED** Issue Date: 01/11/2019 Print Date: 04/08/2022 shorter C <6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups. Alcohol ethoxylates are according to CESIO (2000)
classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intraspecies extrapolations. AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers): Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that of the diethylene glycol to triethylene glycol series , the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight. Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected in vivo. The principal metabolite of TGME is believed to be 2-[2-(2methoxyethoxy] acetic acid . Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers. The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death. Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation. Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation . Due to a high incidence of similar spontaneous changes in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day . In this study, significantlyincreased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity Chemwatch: **5301-15** Page **12** of **15** Version No: 3.1 ### Ultimate All Wheel Cleaner Issue Date: **01/11/2019**Print Date: **04/08/2022** **Mutagenicity:** Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and
5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity. Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day). Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69 Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105 | Acute Toxicity | ✓ | Carcinogenicity | x | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | X | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | X | Legend: ★ - Data either not available or does not fill the criteria for classification Data available to make classification # **SECTION 12 Ecological information** SODIUM LAURYL ETHER **ETHOXYLATED** **SULFATE & ALCOHOLS C9-11** # Toxicity | TOXICITY | | | | | | |-----------------------------|------------------|--------------------|---------------------------------------|------------------|------------------| | Ultimate All Wheel Cleaner | Endpoint | Test Duration (hr) | Species | Value | Source | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | sodium thioglycolate | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants 6.3mg/l | | 2 | | | EC50 | 48h | Crustacea 38mg/l | | 2 | | | LC50 | 96h | Fish | >100mg/l | 2 | | | NOEC(ECx) | 72h | Algae or other aquatic plants | 0.81mg/l | 2 | | sodium lauryl ether sulfate | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 48h | Fish | 0.26mg/L | 5 | | | EC50 | 48h | Crustacea | 2.43-4.01mg/l | 4 | Chemwatch: 5301-15 Version No: 3.1 ### **Ultimate All Wheel Cleaner** Issue Date: **01/11/2019**Print Date: **04/08/2022** | alcohols C9-11 ethoxylated | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------------------|--|--------------------|-------------------------------|---------------|------------------| | | NOEC(ECx) | 720h | Fish | 0.11-0.28mg/l | 2 | | | EC50 | 48h | Crustacea | 2.5mg/l | 2 | | | LC50 | 96h | Fish | 7mg/l | Not
Available | | | EC50 | 96h | Algae or other aquatic plants | 1.4mg/l | 2 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | Toxic to aquatic organisms. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |------------|---------------------------------------|---------------------------------------|--| | | No Data available for all ingredients | No Data available for all ingredients | | ### Bioaccumulative potential | Ingredient | Bioaccumulation | | |------------|---------------------------------------|--| | | No Data available for all ingredients | | # Mobility in soil | Ingredient | Mobility | | |------------|---------------------------------------|--| | | No Data available for all ingredients | | # **SECTION 13 Disposal considerations** ### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. ### Otherwise - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. - Product / Packaging disposal DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or
consult manufacturer for recycling options. - ► Consult State Land Waste Authority for disposal - ▶ Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** # Labels Required | Marine Pollutant | NO | | |------------------|----------------|--| | HAZCHEM | Not Applicable | | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------------------|---------------| | sodium thioglycolate | Not Available | | sodium lauryl ether sulfate | Not Available | | alcohols C9-11 ethoxylated | Not Available | # Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-----------------------------|---------------| | sodium thioglycolate | Not Available | | sodium lauryl ether sulfate | Not Available | | alcohols C9-11 ethoxylated | Not Available | Page 14 of 15 Ultimate All Wheel Cleaner Issue Date: **01/11/2019**Print Date: **04/08/2022** ### **SECTION 15 Regulatory information** ### Safety, health and environmental regulations / legislation specific for the substance or mixture ### sodium thioglycolate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Australian Inventory of Industrial Chemicals (AIIC) Schedule 5 sodium lauryl ether sulfate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) alcohols C9-11 ethoxylated is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) ### **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (sodium thioglycolate; sodium lauryl ether sulfate; alcohols C9-11 ethoxylated) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | No (alcohols C9-11 ethoxylated) | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | No (sodium thioglycolate; sodium lauryl ether sulfate) | | Vietnam - NCI | Yes | | Russia - FBEPH | No (sodium thioglycolate; alcohols C9-11 ethoxylated) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 01/11/2019 | |---------------|------------| | Initial Date | 23/03/2018 | ### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 2.1 | 23/03/2018 | Synonyms, Name | | 3.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancel ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China Chemwatch: 5301-15 Page **15** of **15** Issue Date: 01/11/2019 Version No: 3.1 Print Date: 04/08/2022 # **Ultimate All Wheel Cleaner** EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.